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Bottleneck in Computational Simulation

Nonlinear Solver

Linear Solver

xk+1 = xk + ∆xk

Timestep Solver
xt+1 = F(xt, t)

A∆xk = b
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How fast can we solve Ax = b?

Figure: Evolution of Machines & Algorithms for solving 3D Poisson
Equation (Adapted from Deville) 5 / 15
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What is scalable?

Figure: More difficult problems

Figure: At increased resolution

Figure: Solved efficiently as
computational power increases.
(Images by Duffy & Donzis)
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Preconditioning

Use structure of discrete problem to our advantage
• Parallelism
• Similarities
• Approximations

Design P so that AP−1Px = b is cheaper than Ax = b.
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Example: Convection-Diffusion

Diffusion Convection

−∇2u + w̃ · u = f
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Discretize

Parallelism via Dense interior and Sparse element boundaries

9 / 15



Motivation Solving Ax = b Close

Discretize

Parallelism via Dense interior and Sparse element boundaries

9 / 15



Motivation Solving Ax = b Close

Discretize

Parallelism via Dense interior and Sparse element boundaries

9 / 15



Motivation Solving Ax = b Close

Discretize

Parallelism

via Dense interior and Sparse element boundaries

9 / 15



Motivation Solving Ax = b Close

Discretize

Parallelism via Dense interior and Sparse element boundaries

9 / 15



Motivation Solving Ax = b Close

Discrete System operator

A = (B ⊗ C) + (C ⊗ B)

C ⊗ B =


c11B c12B . . . c1lB
c21B c22B . . . c2lB

...
...

...
ck1B ck2B . . . cklB

 .

Similarity in Tensor Product Structure
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Approximate Model

−∇2u + ~w︸︷︷︸
wind

·∇u

Approximation gives us fast

inverse operation on each
element

Āe−1
interior = M̃(Vy ⊗ Vx )(Λy ⊗ I + I ⊗ Λx )−1(V−1

y ⊗ V−1
x )M̃︸ ︷︷ ︸

Diagonalized via 1D operators!
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Preconditioning Algorithm


Ā1

II 0 . . . 0 Ā1
IΓ

0 Ā2
II 0 . . . Ā2

IΓ
...

. . . . . . . . .
...

0 0 . . . ĀE
II ĀE

IΓ
0 0 . . . 0 ĀS




uI1

uI2

...
uIE

uΓ

 =


b̂I1

b̂I2

...
b̂IE

gΓ

 .
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Sample Results

Figure: Computed Solution for Double Glazing Problem
13 / 15
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Current Work

• Convection in Binary Alloys with Jeff McFadden @ NIST
• Reactive Wetting with Daniel Wheeler @ NIST
• Climate Model with Kate Evans @ ORNL

15 / 15


	Motivation
	

	Solving Ax=b
	
	

	Close
	


